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CONVERSION TABLE

Conversion factors for U.S. customary to metric (SI) units of measurement

To Convert From To Multiply
angstrom meters (m} 1.000 000 X E-10
atmosphere (normal) kilo pascal (kPa) 1.013 25 X E+2
bar kilo pascal (kPa) 1.000 000 X E+2
barn meter? (m?) 1.000 000 X E-28
British Thermal unit (thermochemical) Jjoule (J) 1.054 350 X E+3
calorie (thermochemical) joule (J) 4.184 000
cal {thermochemical)/cm? mega Joule/m3MJ/m?) 4.184 000 X E-2
curie giga becquerel (GBq)* 3.700 000 X E+1
degree (angle) radian (rad) 1.745 329 X E-2
degree Fahrenheit degree kelvin (K) tx=(t°f + 459.67)/1.8
electron volt joule (J) 1.602 19 X E~19
erg Joule (J) 1.000 000 X E-7
erg/second watt (W) 1.000 000 X E-7
foot meter (m) 3.048 000 X E-1
foot-pound-force joule (J) 1.355 818
gallon (U.S. liquid) meter? (m3) 3.785 412 X E-3
inch meter (m) 2.540 000 X E-2
jerk joule (J) 1.000 000 X E+9
joule/kilogram (J/Kg) (radiation dose
absorbed) Gray (Gy) 1.000 000
kilotons terajoules 4,183
kip (1000 Ibf) newton (N) 4.448 222 X E+3
kip/inch? (ks kilo pascal (kPa) 6.894 757 X E+3
ktap newton-second/m? (N-s/m?) 1.000 000 X E+2
micron meter (m) 1.000 000 X E-6
mil meter {(m) '2.540 000 X E-5
mile (international) meter (m) 1.609 344 X E+3
ounce kilogram (kg) 2.834 952 X E-2
pound-force (Ibf avoirdupots) newton (N) 4.448 222

pound-force inch
pound-force/inch

pound-force /foot?
pound-force/inch? (psi)
pound-mass (lbm avoirdupois)
pound-mass-foot2 (moment of inertia)
pound-mass/foot?

rad (radiation dose absorbed)
roentgen

shake

slug

torr (mm Hg. 0°C)

newton-meter (N-m)
newton/meter (N/m)
kilo pascal (kPa)

kilo pascal (kPa)
kilogram (kg}
kilogram-meter? (kg-m?)
kilogram /meter® (kg/m?3)
Gray (Gy)**
coulomb/kilogram (C/kg)
second (s)

kilogram (kg)

kilo pascal (kPa)

1.129 848 X E-1
1.751 268 X E+2
4.788 026 X E-2
6.894 757

4.535 924 X E-1
4214011 XE-2
1.601 846 X E+1
1.000 000 X E-2
2.579 760 X E-4
1.000 000 X E-8
1.459 390 X E+1

1.333 22 X E-1

*The becquerel {Bq) is the SI unit of radioactivity; Bp = 1 event/s.
**The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1

INTRODUCTION

1.1 BACKGROUND AND OBJECTIVE.

This technical report describes computational modeling of underground
tunnel response in support of the Underground Technology Program (UTP) which
is a multi-year investigation into the vulnerability of underground structures. The
overall program includes computational modeling, material modeling, laboratory
testing, and field testing to improve the ability to predict the response and failure
of underground structures subjected to ground shock due to near-surface
explosions. The emphasis is on deeply buried tunnels with little or no
reinforcement.

1.2 SCOPE AND SUMMARY.

The computational modeling effort involved three major areas of
investigation: 1) benchmark activity, 2) parametric study and 3) laboratory test
simulation. The benchmark activity was a step-by-step series of idealized
problems which addressed various aspects of tunnel response in jointed rock
masses. The parametric study considered the systematic sensitivity of loading
environment, material characterization and geometric conditions as well as
computational approaches on tunnel response. Numerical simulation of the SRI
International lab-scale HE experiments on tunnel response in intact limestone
was conducted to correlate calculational approaches with data.

As one of several participants in the computational modeling effort, it is
clear that a step-by-step procedure of material model verification, free-field
loading environment definition and parametric response calculations need to be
performed in order to reduce uncertainties and improve the ability to predict the
response and failure of underground structures subjected to ground shock due to
near-surface explosions. |




SECTION 2

BENCHMARK ACTIVITY

Various numerical approaches to problems of tunnel dynamics are
compared with each other and, wherever possible, with exact analytic solutions
by Logicon RDA [Simons, 1992]. The medium is an idealization of a jointed rock
mass. The intact rock is linear elastic-plastic with a pressure dependent failure
surface and associated plastic flow law. There are two orthogonal sets of equally
spaced joints. Each joint is nonlinear elastic in the normal direction and linear

elastic with Coulomb friction in shear.

The TRT approach utilizes the EXCALIBUR finite element method [lto,
England & Nelson, 1981] to represent the intact rock and joints with two different
types of models for jointed rock, an explicit one where the joints are treated
separately (in the near field of the tunnel), and an implicit one where their
properties are lumped together with those of the intact rock (in the far field). The
TRT implicit joint model admits arbitrary constitutive behavior in both the intact
rock and joint, and by enforcing internal compatibility and stress equilibrium
derives a super-element representing the combined deformation due to both
joints and intact rock.

2.1 PROBLEMS WITH ANALYTICAL SOLUTIONS.

The first five problems are quasi-static driven by boundary displacements
which are consistent with homogeneous (uniform) strain throughout the region of
interest. This does not mean that the actual strains will be uniform; if there are
joints then the actual strains will not be uniform. But in fact the stresses and
strains in the intact rock and joint material will separately be homogeneous at
each point of the imposed strain path. This opens the possibility of direct
analytical solution of these problems for comparison with numerical results.

Another way of viewing the situation is that each of these problems
reduces to nothing more than finding the response of a single implicit element
around a specified strain path. This is strictly a material response question;




equations of motion or compatibilty among elements play no role whatsoever. It
is interesting to note that TRT was the only participant to produce single-element
solutions to all of the first five problems.

2.2 TWO-DIMENSIONAL PROBLEMS.

Simplicity makes analytic solutions possible. In contrast the two-
dimensional problems have fields which vary both spatially and temporally so
that analytic solutions are not generally feasible. The free-field problem concerns
deformations of a wedge-shaped section of an annulus in plane strain, as shown
in Figure 2-1, with the entire region containing vertically and horizontally jointed
rock. The top edge (inner arc) is loaded with the pressure pulse shown in the
figure, while shear tractions are zero. The left and right sides have roller
boundaries, making the left side a plane of symmetry (the right side is not,
because the effective anisotropy due to jointing makes the material unsymmetric
about that plane). The lower edge (the outer arc) is a transmitting boundary.

Most of the region is to be modeled implicitly, except for a rectangular
region extending 2.5 tunnel diameters (12.5 m) in all directions from the on-axis
point at R = 500 m. This region is modeled explicitly, in anticipation of the tunnel
situated there in the final problem. The free-field problem is essential to clearly .
define the loading environment at the tunnel range. The geometry and loading in
the final problem are shown in Figure 2-2, which are precisely the same as the
free-field problem but now there is a lined tunnel in the center of the rock island.

Based on a combination of physical understanding of wave propagation
and material behavior and comparison with the analytic solutions, three of the
numerical approaches, including TRT, are judged [Simons, 1992] to have
produced credible results to the final problem of a lined tunnel in jointed rock
mass engulfed by a cylindrically divergent stress wave.
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SECTION 3

PARAMETRIC STUDY

The parameter study provides a systematic investigation of the sensitivity
of tunnel response to a variety of factors:

- Geometric Considerations
- range from source
- diameter
- divergence

-Loading Environment
- peak incident stress
- pulse duration

- Material Characterization
- dilatancy
- extension/compression strength ratio
- flow rule

- Numerical Scheme
- code

The scope of the study (initially) involves nine independent parameters or 29 =
512 two-dimensional calculations using a wedge-shaped computational model
and linear elastic-plastic material model similar to that in the benchmark activity
but without joints. The participants are Weidlinger Associates (WA) and TRT.
The calculational data from the parameter study is analyzed by Logicon RDA
[Pucik & Curry, 1993] using design-of-experiments methodologies [Box, Hunter &
Hunter, 1978].




3.1 PROBLEM DEFINITION.

The initial problem definition for geometry, material properties, loading and
calculation matrix are given in Tables 3-1 to 3-4, respectively.

3.2 CONCLUSIONS.
The key conclusions from this parameter study are as follows:

- Tunnel Failure Sensitive to Three Main Parameters
- peak incident stress
- extension/compression strength ratio
- flow rule

- Crush Strength Not A Very Sensitive Parameter
- Numerical Approach (Calculator) An Important Parameter

- Geometric Scaling Applies
- range and diameter combined into single parameter
- if and only if numerical grid scaled geometrically




Table 3-1. Geometry.

Property Symbol Value(s)
Range of tunnel from source 250 m 500 m
Tunnel diameter 5m 10m
Liner thickness D/100
Table 3-2. Material Properties.
Property Symbol Value(s)
Rock mass density P 2500 kg/m®
Rock Young's modulus E 30 GPa
Rock Poisson's ratio v 0.25
Rock cohesion C, 4.5 MPa
Rock friction angle o 25°
Rock dilation angle v 25° 0°
Rock extension/compression strength G, /6; 0.5 1
Rock tensile strength T, 2 MPa
Rock critical pressure P. 66.7 MPa 133.3 MPa
Rock uniaxial tangent modulus M 24 GPa
Rock cap aspect ratio Reap 2.5:1
Liner Young's modulus E, 200 GPa
Liner Possion's ratio v, 0.30
Liner yield strength Cv - 400 MPa
Liner mass density P, 7500 kg/m®




Table 3-3. Loading.

Parameter Symbol Value(s)
Peak incident stress 100 Mpa 200 Mpa
Positi.ve phage duration of t/oue 1 05
velocity relative to DUG-1C .
Wavefront divergence R/R,, 0 1
Table 3-4. Calculation Matrix.
R o, v L/ pus D ()'9/(5c P.
Run (m) [ (MPa) | (deg) (m) (MPa)
1 500 200 25 1 10 1 133.3
2 500 200 25 0.5 5 0.5 133.3
3 500 200 0 1 5 0.5 66.7
4 500 200 0 0.5 10 1 66.7
5 500 100 25 1 10 0.5 66.7
6 500 100 25 0.5 5 1 66.7
7 500 100 0 1 5 1 133.3
8 500 100 0 0.5 i0 0.5 133.3
9 250 200 25 1 5 1 66.7
10 250 200 25 0.5 10 0.5 66.7
11 250 200 0 1 10 0.5 133.3
12 250 200 0 0.5 5 1 133.3
13 250 100 25 1 5 0.5 133.3
14 250 100 25 0.5 10 1 133.3
15 250 100 0 1 10 1 66.7
16 250 100 0 0.5 5 0.5 66.7




SECTION 4

LABORATORY TEST SIMULATIONS

SRI International performed both static tunnel tests [Simons et al, 1993}
and spherical wave tunnel (SWAT) tests [Klopp et al, 1993] in limestone blocks to
compare the measured loading environment and tunnel closures with those from
various computational models. The TRT approach utilizes relatively fine zoning
to capture the free-field environment with ten circumferential elements across the
tunnel radius and radial elements one-fifth of the radius near the tunnel, while the
liner is a simple membrane. Both two-invariant and three-invariant failure models
are developed for the limestone based on the RE/SPEC material properties
[Fossum, 1993]. All numerical simulations were performed ‘pre-test' before the
measured data were made available. In addition, preliminary calculations were
conducted to verify the computational approach and material modeling.

4.1 STATIC TUNNEL TESTS.

Three static tunnel tests in limestone are simulated, called ST1, ST2, and
ST3. The limestone specimens are cylinders 30.5 cm (12 in.) in diameter with a
tunnel located at the specimen midheight. The height of the specimen for ST1 is
30.5 cm (12 in.) and the tunnel is unlined and has a diameter of 19.1 mm (0.750
in.). For ST2 and ST3 the specimen height is 45.8 cm (18 in.) and the tunnels
are lined (fully annealed 3003 aluminum tube with 70 MPa strength). The
specimens are loaded by two independent hydraulic pressures, a vertical load
applied to the top and bottom surfaces of the cylinder and a confining load
around the outer surface of the cylinder. For ST1 and ST3 the loading history is
a single cycle of loading (191 MPa and 139 MPa, respectively) and unloading.
For ST2 the specimen is loaded to 125 MPa, unloaded, reloaded to 156 MPa,
and then unloaded.

The closure comparisons of the numerical simulations of ST1 using two-
invariant (M-S) and three-invariant (W-W) strength models based on RE/SPEC-
93 properties show little difference at the crown-invert (Figure 4-1) but a factor of
three increase at the springline (Figure 4-2) due to strength reduction (70%) in
TXE , which is more consistent with the measured closure data. Numerical




simulations of ST2 produce similar results as ST1 since the confining conditions
are essentially uniaxial strain with no shear failure in the far-field at the loading
boundary. In contract, both the numerical simulations and laboratory
experiments of ST3 are very sensitive and produce a wide variation in tunnnel
closure due to the divergent loading which can induce shear failure in the whole
specimen.

4.2 SPHERICAL WAVE TUNNEL TESTS.

The spherical wave tunnel (SWAT) tests involve a charge of PETN
detonated in a block of limestone containing tunnels. The numerical simulations
involve the two initial/lboundary value problems given in Figure 4-3. The
problems are identical except for the location of the tunnel, either 14.5 cm or 19.5
cm from the center of the charge. The measured particle velocity history shown
in the figure is applied to the inside of the 7.50-cm radius cavity.

A rate-enhanced three-invariant (W-W) failure with symmetric crush (Cap)
model consistent with RE/SPEC and ARA static (10'5/s) data, ARA extrapolated
dynamic (102 - 10*3/s) strength data and LLNL shock hugoniot (10*%/s) crush
data is developed for numerical simulation of SWAT. Assuming log-linear
interpolation with no SWAT free-field data, this uncalibrated rate-enhanced
model gives about a factor of two increase in crush strength (initial cap location)
and 33% increase in shear strength.

The rate-enhanced model is also calibrated using log-bilinear interpolation
to match SWAT (10*%/s - 10*¥s) free-field environment at both the particle
velocity stations (Figure 4-4) as well as the stress at the range of the tunnels
(Figure 4-5). The comparison of the calibrated rate-enhanced response to the
measured data at the 14.5-cm tunnel is 8% versus 7% crown-invert closure
(Figure 4-6) and 4% versus 2% springline closure (Figure 4-7). This is a very
good comparison given the uncertainty in strain-rate effects on shear strength
including extension/compression strength ratio. It should be noted that while the
rate independent model appears to give better correlation with measured
springline closure (Figure 4-7), this is very misleading since this model does not
reproduce the measured free-field loading environment (Figures 4-4 and 4-5).

10
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Figure 4-3. SWAT Initial/boundary value problem.

2.06-cm-diameter—_/

Tunnel

Gage z
{cm)

Pv2 8.33
PV3 10.00
PV4 11.67
PV5 13.33
PV6 15.00
PV7 16.67
PV8 18.33
PV9 20.00
PVi0O 2167
PV11 23.33

7.50-cm-radius Cavity

121.9cm

13

>




‘(wo €€°€1) GAd - A00jaA pjay 8314 -y ainbig

(syw) Ayoojeon

(oasm) awi) (oastl) awi]
0se 00¢ 0s1 00] 0S 0 oL 0s¢ 00¢ oSt 00l 0S 0 oL-
_.l_\w e ~
\3
\
. o § \ 0l
; o P
. 2} \
Il < /
H oz 2 /( \ 0z
A - = RN N
.\ juswuadxgy
pajeiqieD-1 4l cccccccccctt . 0€ 06
psjeiqiedun-1ylL - — - —"* -
juswiuadx3gy
ov ob

Juspuadaq ayey juspuadapu| ajey

14



pajelqieD-1yl =-cccccccccce
psjeigied’un-1y41 - — - — " —
EwE_._oaxw

‘WO G'| - SSOJ)S [elpel pjalj 9al4 ‘G- ainbi4

(oasr) swn} (oast) awi)
0se 00¢ 0st 0ol 0S 0 0se 00¢ 0st 0ol 0s
0
ceveaent 3 .)/
~°*"T. °.
e — N e N Ce., OO—.W . / y
.\\ e o \ // /
\ & /
N\ E N\
\ 00¢ Py \
00€

Juspuada( sjey Juspuadapu| ajey

00l

00¢

00€

(edW) ssang feipey

15




pajeIqUeD- 1YL +cc--teeeee

‘WO G'| - 8INSO|D HBAU| UMOID ‘O~ ainbi

pajeiqiesun-1y1 - — - —- —
juswiadxy —————
(oastl) awiy
0S¢ 00¢ 0S1 00l 0S
d
/
|
/
/
.- "/
SETEAAL LRSS0 FONPTTTy
- AP S b .

Juepuadaq ajey

ol

(%) @InSO|D UBAUJ-UMOID

0s¢

00¢

0S1

(oasr) awiy
00l

0S

I.\/.\.

Juspuadapu| ajey

ol

(%) @InsSO}D HBAU|-UMOID

16



pajeiqiied-1d1

pajeiqiesun-141 - — - =" —
juswuadx3
(oasr) awij
0s¢ 00¢ 0s1 0oL

‘W9 G| - ainso|D aulbuuds /- ainbi4

0s

Ssaase

juspuada( ajey

(%) @inso|n aulbuudg

0s¢

(oast) awiy
00¢ 0si 001 0S
o
\\/ /\
/
el _—4=-T

juspuadaepu| ajey

(%) ainso| auybundg

17




SECTION 5

RECOMMENDATIONS

As one of several participants in the computational modeling effort,
it is clear that a step-by-step procedure of material model! verification, free-field
loading environment definition and parametric response calculations need to be
performed to reduce uncertainties and improve the ability to predict the response
and failure of underground structures subjected to ground shock due to near-
surface explosions. A major uncertainty is strain-rate effects on shear strength
including extension/compression strength ratio of rocks of interest.
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